深度学习什么是模型又在训练什么?

深度学习是机器学习的一个分支,它主要通过使用称为神经网络的复杂结构来学习数据的表征。在深度学习中,”训练”和”模型”是两个核心概念。

训练

在深度学习中,”训练”是指用数据来训练一个神经网络。这个过程涉及以下几个步骤:

  • 输入数据: 这些数据可以是图片、文本、声音或其他任何形式的信息。对于不同类型的问题,输入数据的形式会有所不同。
  • 标签: 在监督学习中,每个输入数据通常都会有一个对应的标签,这个标签是我们想要模型预测的目标。
  • 学习过程: 在这个过程中,神经网络通过调整其内部参数(通常是权重和偏置)来尝试正确地预测输入数据的标签。
  • 损失函数: 用于衡量模型的预测结果和实际标签之间的差异。训练的目标是最小化这个损失函数。
  • 优化算法: 如梯度下降,用于调整网络参数以最小化损失函数。
  • 迭代过程: 整个训练过程是迭代的,通常需要多次遍历训练数据集,这些遍历称为”epoch”。
继续阅读“深度学习什么是模型又在训练什么?”

开源深度学习框架PyTorch

什么是 PyTorch?

PyTorch 是一个基于软件的开源深度学习框架,用于构建神经网络,将 Torch 的机器学习 (ML) 库与基于 Python 的高级 API 相结合。它的灵活性和易用性以及其他优点使其成为学术和研究界领先的机器学习框架。

PyTorch 支持 多种神经网络架构,从简单的线性回归算法到复杂的卷积神经网络和用于计算机视觉和自然语言处理 (NLP) 等任务的生成式转换器模型。PyTorch 基于广为人知的 Python 编程语言构建,并提供广泛的预配置(甚至预训练)模型库,使数据科学家能够构建和运行复杂的深度学习网络,同时最大限度地减少在代码和数学结构上花费的时间和精力

继续阅读“开源深度学习框架PyTorch”

神经网络原理

神经网络是什么?

神经网络是一组受人类大脑功能启发的算法。一般来说,当你睁开眼睛时,你看到的东西叫做数据,再由你大脑中的 Nuerons(数据处理的细胞)处理,并识别出你周围的东西,这也是神经网络的工作原理。神经网络有时被称为人工神经网络(Artificial Neural Network,ANN),它们不像你大脑中的神经元那样是自然的,而是人工模拟神经网络的性质和功能。

继续阅读“神经网络原理”
腾讯云图