深度学习什么是模型又在训练什么?

深度学习是机器学习的一个分支,它主要通过使用称为神经网络的复杂结构来学习数据的表征。在深度学习中,”训练”和”模型”是两个核心概念。

训练

在深度学习中,”训练”是指用数据来训练一个神经网络。这个过程涉及以下几个步骤:

  • 输入数据: 这些数据可以是图片、文本、声音或其他任何形式的信息。对于不同类型的问题,输入数据的形式会有所不同。
  • 标签: 在监督学习中,每个输入数据通常都会有一个对应的标签,这个标签是我们想要模型预测的目标。
  • 学习过程: 在这个过程中,神经网络通过调整其内部参数(通常是权重和偏置)来尝试正确地预测输入数据的标签。
  • 损失函数: 用于衡量模型的预测结果和实际标签之间的差异。训练的目标是最小化这个损失函数。
  • 优化算法: 如梯度下降,用于调整网络参数以最小化损失函数。
  • 迭代过程: 整个训练过程是迭代的,通常需要多次遍历训练数据集,这些遍历称为”epoch”。
继续阅读“深度学习什么是模型又在训练什么?”
腾讯云图